An extension of Kesten's renewal theorem for random walk in a random environment
نویسندگان
چکیده
منابع مشابه
Central Limit Theorem in Multitype Branching Random Walk
A discrete time multitype (p-type) branching random walk on the real line R is considered. The positions of the j-type individuals in the n-th generation form a point process. The asymptotic behavior of these point processes, when the generation size tends to infinity, is studied. The central limit theorem is proved.
متن کاملRandom Walk in a Random Multiplieative Environment
We investigate the dynamics of a random walk in a random multiplicative medium. This results in a random, but correlated, multiplicative process for the spatial distribution of random walkers. We show how the details of these correlations determine the asymptotic properties of the walk, i.e., the central limit theorem does not apply to these multiplicative processes. We also study a periodic so...
متن کاملRandom Walk in Random Environment: A Counterexample?
We describe a family of random walks in random environments which have exponentially decaying correlations, nearest neighbor transition probabilities which are bounded away from 0, and yet are subdiffusive in any dimension d < o e .
متن کاملPólya's Random Walk Theorem
This note presents a proof of Pólya’s random walk theorem using classical methods from special function theory and asymptotic analysis.
متن کاملLarge Deviations for Random Walk in a Random Environment
In this work, we study the large deviation properties of random walk in a random environment on Z with d ≥ 1. We start with the quenched case, take the point of view of the particle, and prove the large deviation principle (LDP) for the pair empirical measure of the environment Markov chain. By an appropriate contraction, we deduce the quenched LDP for the mean velocity of the particle and obta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Applied Mathematics
سال: 1986
ISSN: 0196-8858
DOI: 10.1016/0196-8858(86)90008-4